
Bilkent University

Senior Design Project

Final Report

Project: Signify

Team Members: Ali Taha Dinçer, Çağlar Çankaya, İrem Ecem Yelkanat, Muhammed Naci

Dalkıran, Sena Korkut

Supervisor: Ayşegül Dündar

Jury Members: Shervin Arashloo & Hamdi Dibeklioglu

This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Introduction 4

Requirements Details 5

Functional Requirements 5

Non-functional Requirements 6

Pseudo Requirements 7

Final Architecture and Design Details 7

Overview 7

Subsystem decomposition 7

Hardware/software mapping 9

Persistent data management 10

Access control and security 10

Global software control 11

Boundary conditions 11

Development/Implementation Details 12

Object Design Trade-offs 12

Interface Documentation Guidelines 13

Engineering Standards 13

Packages 13

Screens 13

Managers 15

Model 16

Machine Learning 16

Class Interfaces 17

Screens 17

Managers 25

Model 30

Machine Learning 31

Translation Pipeline 34

Testing Details 34

2

Performance of the Translation Models 34

Communication Through Server 35

Continuity 35

Maintenance Plan and Details 35

Server Maintenance 35

Database Maintenance 35

Other Project Elements 35

Consideration of Various Factors in Engineering Design 35

Ethics and Professional Responsibilities 36

Judgments and Impacts on Various Contexts 36

Teamwork Details 37

Contributing and Functioning Effectively on the Team 37

Helping Creating a Collaborative and Inclusive Environment 38

Taking Lead Role and Sharing Leadership on the Team 38

Meeting objectives 39

New Knowledge Acquired and Applied 39

Conclusion and Future Work 40

Glossary 41

References 41

3

1. Introduction

In society, people who are hearing impaired and/or speech impaired have difficulty

expressing themselves and communicating with other people because most people lack

knowledge of sign language. Even though the improvements in technology have changed the

way people live and made the lives of people easier by, for example, transforming mobile

phones from sound devices into multi-functional devices, communicating with people who

are hearing impaired and/or speech impaired continues to be a problem in many areas

including social and technical contexts. These communication activities include social life,

healthcare, career development, and education. Furthermore, as a result of the Covid19

pandemic that started in late 2019, obligations regulated by most countries, including wearing

face masks and social and physical distancing, have increased the communication and social

challenges for hearing impaired people. For example, wearing face masks has led to some

negative impacts in communication with other people as it eliminates speech perception by

visual features through lipreading. Additionally, a considerable amount of face-to-face

communications have turned into virtual communications, which results in more hardship for

the hearing impaired and/or speech impaired people as some of the most used virtual

communication services like Zoom, Microsoft Teams or Skype do not support sign language.

According to the World Health Organization (WHO), 5% of the people on the earth are

hearing impaired, which is more than 350 million people [1] and will exceed 700 million by

2050 [2]. Considering that, sustainability of the social lives of hearing-impaired and/or

speech impaired people will be an essential issue in the future. Therefore, we propose a

solution to this problem named Signify. Signify is a mobile application with the main aim of

helping hearing and/or speech impaired people in their social lives by translating sign

language into text along with speech and text-speech to sign language translation in real-time.

This report consists of the final requirements details, architecture and design, development

and implementation details, testing details, maintenance plan details, and other project

elements.

2. Requirements Details
2.1. Overview

Signify is a mobile application that aims to solve social problems regarding communication,

understanding, and expression for the hearing impaired and/or speech impaired people. By

4

this means, Signify helps these people to improve their quality of life. In that manner, the

application can be seen as a communication tool.

There are already existing applications such as “Hand Talk Tradutor para Libras” [3], “ASL

Translator” [4], and “S.L.A.I.T.” [5] for the hearing impaired and/or speech impaired people.

However, “Hand Talk Tradutor para Libras” does not contain real-time translation over the

video, which creates a one-way channel between communicators. “ASL Translator” is a paid

application and works on pre-given text and video translations, in which translations are

pretty limited, and for every new word or phrase, the app needs to be updated. Finally,

“S.L.A.I.T.” can only be used during video calls, and it is still in the beta phase.

Signify combines these apps in terms of their translational and conversational capabilities

with tools like bidirectional translation. With Signify, users can easily communicate through

video calls and use their mobile phones to real-time translate to both text and sign language in

a day-to-day conversation. With this, hearing impaired and/or speech impaired people can

join conversations even if the people in the conversation do not know sign language.

2.2. Functional Requirements

2.2.1. Bidirectional Language Translation

The main purpose of the application is to provide a channel among hearing-impaired or

speech-impaired people and society. For this intention, two-way language transformation is

ensured. The application is able to translate an English speech or text into sign language. On

the reverse side, the application also converts sign language from video to text for the users

who do not know sign language. For this, the user should be able to use the microphone and

camera of their phones.

2.2.2. Real-time Language Translation

The application works close to the real-time speed to achieve practical and effective

communication, especially for online meetings and conferences. Users should be able to

reach the translation almost synchronically with the initial communicator.

2.2.3. Additional Information and Tutorial

The application provides extra information about ASL. The main page contains two different

sections that shows the recent news about ASL and a tutorial for learning word-level ASL.

5

2.3. Non-functional Requirements

2.3.1. Usability

The application has a user-friendly interface for users to navigate and appreciate any feature

within two seconds. Also, because the target user is impaired people, universal icons and

modern designs will be used. In this way, the application gains higher usability.

2.3.2. Extensibility

The application architecture is easily extensible for new learning models and additional

features.

2.3.3. Performance

Machine learning related computation is computed and results are sent from a host, therefore,

the response time is expected to be 100 ms.

2.3.4. Security

The application does not leak any non-encrypted personal information in case of a data

breach.

2.3.5. Compatibility

The application is available for all operating systems, including Android and iOS, to deliver

the service to all users.

2.3.6. Privacy

Any personal information and video and audio records are not used or shared with any user, a

third-party company, or application.

2.4. Pseudo Requirements

● Version Control Git/Github is used as a version controller throughout the project.

● In order to implement the project, the Dart programming language is used.

● The application is available on both Android and iOS platforms.

● Firebase is used for the backend side of the project and Flutter will be used for the

frontend side of the project.

6

● PyTorch is used in order to implement the GAN, OpenPose, and other prediction

models.

● StanfordNLP and HappyTextToText libraries are used to convert text to gloss and

gloss to text.

● WLASL Dataset is used in order to train the models.

● In order to implement online communication, the stream WebRTC library is used.

3. Final Architecture and Design Details

3.1. Overview

Signify mainly works through video, text, and audio inputs followed by generated video and

text outputs. It is a phone-based application adaptable to different operating systems. Signify

is based on a simple client-server architecture. The application uses Firebase in order to store

user-related data and room data that have been generated by creating calls. All the requests by

the user require changes in real-time, therefore Firebase Real-Time Database is used. The

application requires all the translations handled on the localhost, so, API systems are

optimized to send and receive requests near real-time. Each subsystem in the implementation

respects the 4 layer MVC architecture. The detailed software architecture and more are

shown and discussed in the next sections.

7

3.2. Subsystem Decomposition

Figure 1: Subsystem Decomposition Diagram

8

3.3. Hardware/software Mapping

Figure 2: Deployment Diagram

The architecture of hardware/software mapping is shown in Figure 2. Signify architecture

consists of two main parts: Client and Server. The server holds Firebase, which is the

database that will be used to store the information of user credentials, private user data, and

call-rooms for video conferencing. Additionally, Web RTC is used for real-time

communication during video conferences. It is connected to the server along with Firebase

and each process related to video calls is operated based on the information stored on

Firebase (i.e. call rooms). Signify stores its machine learning models in localhost and handles

the translation using FastAPI services. Every other operation is mapped on the Client side.

Translation will be done by processing keyboard input, audio, and video that are input by the

users; thus, the application’s main features require the usage of hardware systems such as a

camera unit and voice I/O unit for getting input data and generating a translated output.

Signify uses those units on the Client-side through an operating system. In addition, Signify

is adaptable to both iOS and Android.

9

3.4. Persistent Data Management

User-related data which are the user’s name, password, and id are stored in the Firebase

database to use during signing in, joining meetings, inviting meetings, etc. The users can have

friends and they can invite them; therefore, user’s friends data such as their ids, contact

information for meeting, names etc. are also stored in the Firebase database. However, the

meetings’ history, logs, and outputs generated by ML models are not stored in the database

because these are personal information, and storing them might cause privacy violations.

Meeting-related data mentioned in the previous sentence is stored in the local memory of the

user.

3.5. Access Control and Security

Users have an account in Signify. They register the application with their name, password,

and email. These data are stored in the database. In the database, users have unique userIds

generated automatically by the database. When the user signs in to the application, they

should enter her/his password and email. To control the sign-in, email and password

combination should be checked. The passwords of the users are encrypted in the database

with an authenticator key and hash map to avoid adversarial attacks and account thefts. Even

if the adversarials access the database server, they cannot access passwords without an

authentication key. The length of the authentication key is n which cannot be broken in

real-time (polynomial-time boundary). For the real-time meeting, the microphone for users

having no disability and video permission should be taken from the user. In the meeting,

users can share personal information with other users; therefore, the chat, logs, and personal

data cannot be stored. As a database, we use Firebase. Firebase has its own defense system

against adversarial attacks. It can be said to be trusted third-party software. ML models

process the meeting data like sent and received messages, voice, and video by sending them

through APIs. After a while, the data sent is deleted from the server. Finally, during the

meeting, user communication is provided via Web-RTC API. This API is a trusted API and

has its own defense protocol against adversaries.

3.6. Global Software Control

In the application, the same data might be requested for meeting the users’ needs. For

instance, a huge number of users want to add their friends. In this case, the database and

application might encounter race conditions. To handle this issue, the server is event-driven.

10

Event-driven provides the server with opportunities to respond to client’s request quickly and

accurately. Event-driven programming is generally used in communication between server

and client.

3.7. Boundary conditions

● Initialization

The application is a Flutter project that is shipped via downloading from App Store for iOS

devices and Google Play Store for Android devices. After downloading and installing the

application to the phone, the application can start by clicking the application.

When the user opens the application for the first time, the user is navigated to the sign-in

page where they can log in to the application or create a new account. After the

authentication process is successfully completed and the user logs in to the application, they

can navigate to the main functionality screens including the home page, translation page,

video call page, contacts page, and profile page.

The user must have a proper Internet connection in order to use login/register functionalities,

change profile-related data, manage the contacts and participate in video calls because these

operations need server connection establishment.

● Termination

The users can log out from the application by clicking on the logout button. When the user

logs out from the application, all the data that is stored locally on the user’s mobile device

will be deleted permanently. When the user closes the application without logging out, when

they open the application again, they will be logged in to the application automatically.

● Failure

While using the application, it is possible to face some errors, but it is significant to eliminate

these problems before the users encounter them. In the implementation of Signify, we

provided users with an extremely reliable system by utilizing exception handling mechanisms

as efficiently as possible. However, the users still could encounter some failures that can

happen due to the quality of Internet connection, mobile device’s hardware systems, and

server errors. When the user faces a network error, the system disconnects the user from the

video call if the network error could not be solved in 1 minute. In case of server errors, the

11

applications cannot connect to the database which may result in some failures in the

application such as not being able to log in or not being able to create/join video calls.

4. Development/Implementation Details

4.1. Object Design Trade-offs

4.1.1. Security vs. Portability

Computation for machine learning models requires high computational power. Using

third-party computational power (computation in the cloud/server) leads to a security concern

since the user’s audio, and the video should be sent to the cloud/server. For now, we use our

local APIs, therefore, there is no security concern. However, if we move the translation

operations to a third-party server in the future, we should handle this security concern.

4.1.2. Rapid Development vs. Functionality

This project is a one-year project; therefore, we developed the application rapidly. During the

project implementation, we aimed to implement our core functionalities as soon as possible.

However, because of the short time we have, some of the planned functionalities might be

ignored. For example, for sign language generation, the model can generate sign language

using the users’ image; but it remained an extra option as its performance is not enough to be

published yet.

4.1.3. Efficiency vs. Portability

The application can be used efficiently on the targeted devices which provide high

computational power. But if the device cannot provide the required computational power, the

efficiency of the application might be decreased. For example, some computations might take

a long time, and the accuracy of the ML models might be decreased. Because we want that all

users most efficiently use the application, we restricted the target devices.

12

4.2. Interface Documentation Guidelines

We used the following convention for class descriptions.

Class Name Explanation for the class

Attributes attributeName: type Explanation for the attribute

Methods methodName(args): return type Explanation for the method

“Class Name” is the name of the class described, “Attributes” are listed as names and types

followed by their explanations, “Methods” are listed as signatures and return types followed

by their explanations.

4.3. Engineering Standards

This report follows the Unified Modeling Language (UML) [3] standards to visualize the

design of the system and represent class interfaces. Additionally, IEEE referencing style

standards [4] for citations are used throughout the report for all of the citations.

13

4.4. Packages

4.4.1. Screens

Figure 3: Screens Package

SignupScreen: Displays the signup screen before entering the application. The app falls back

to this screen if the user has not signed up or logged in.

LoginScreen: Displays the login screen for the users who already have an account. The app

falls back to this screen if the user logged off from the app.

ForgotPasswordScreen: Displays the screen to receive mail regarding resetting the account

if the user already has an account.

HomeScreen: The main screen after logging or signing in to the application. This screen

welcomes the user unless the user decides to log out.

CallScreen: Displays the call screen with call requests and history.

InCallScreen: Displays the call screen in the online conference joined or created.

14

TranslationScreen: Displays the translation screen with camera and microphone options for

the translation in real-time.

ContactsScreen: Displays the contacts of the user.

PendingInvitations: Displays pending contact invitations.

ContactScreen: Displays a specific contact with the profile information and call history.

SettingsScreen: Displays the settings for the users to customize the interface, or change the

profile information according to their preferences.

4.4.2. Managers

Figure 4: Managers Package

PageHolder: Main manager to handle screen translation throughout the app. Basically, a

super-class that contains each screen and handles the navigation.

FirebaseManager: Updates Firebase and retrieves information according to the user.

15

DatabaseManager: Updates the database and retrieves information about the contacts

according to the user.

ConversationManager: Manages the requirements of the online conference.

SharedPreferencesManager: Manages the interface settings according to user preferences.

TranslationManager: Manages the translation among text, speech and video. Work as a

bridge to main machine learning mechanics.

4.4.3. Model

Figure 5: Model Package

Conversation: Holds the information about the online conference.

User: Holds the information about the user.

Contact: Holds the information about a contact of the user.

16

4.5. Class Interfaces

4.5.1. Screens

SignUpScreen Displays the sign up screen before entering the application.

Attributes name: String Name input by the user.

email: String E-mail input by the user.

password_main: String
password_check: String

Password and password check
input by the user.

firebaseManager:FirebaseManag
er

Instance of a Firebase Manager
class.

preferencesManager:SharedPrefe
rencesManager

Instance of a Shared
Preferences Manager class.

Methods changePasswordVisibility(): void The option to make the
password visible or invisible
during user input.

checkPasswordEquals(): boolean Checks if the password main
and password check matches.

onSignInPressed():void Calls Firebase instance and
SharedPreferences instance and
invokes sign-in operations
including saving user token to
preferences instance.

onSignUpPressed(user:
User.signUp): void

Navigates to LoginScreen
without losing the already
entered user info by using the
User<SignUpType>
constructor.

LogInScreen Displays the login screen for the users who already have an

account.

Attributes email: String E-mail input by the user.

password: String Password input by the user.

17

firebaseManager:FirebaseManag
er

Instance of a Firebase Manager
class.

preferencesManager:SharedPrefe
rencesManager

Instance of a Shared
Preferences Manager class.

Methods onSignInPressed(user:
User.signIn): void

Navigates to SignInScreen
without losing the already
entered user info by using the
User<SignInType> constructor.

onSignUpPressed(): void Calls Firebase instance and
SharedPreferences instance and
invokes sign-up operations
including saving already
existing user token to
preferences instance.

onForgotPasswordPressed():
void

Navigates to
ForgetPasswordScreen.

ForgotPasswordScr
een

Displays the screen to receive mail regarding resetting the account
if the user already has an account.

Attributes email: String E-mail input by the user.

firebaseManager:FirebaseManag
er

Instance of a Firebase Manager
class.

preferencesManager:SharedPrefe
rencesManager

Instance of a Shared
Preferences Manager class.

Methods onBackPressed(): void Goes back to the previous page
when it is called.

onSendPressed(user:User.forgotP
assword): DateTime

Sends e-mail to the user when it
is called. Returns a DateTime
instance of the epoch time that
the request sent in order to
calculate the time to show the
“resend” option.

HomeScreen The main screen after logging in to the application.

Attributes siteNavigator:
HTMLSiteManager

Site navigator attribute.

18

Methods onCardPressed():boolean Open the URL by using the
HTMLSiteManager instance
with respect to the clicked card
content.

CallScreen Displays the call screen with call requests and history.

Attributes firebaseManager:
FirebaseManager

Instance of a Firebase Manager
class.

preferencesManager:
SharedPreferencesManager

Instance of a Shared
Preferences Manager class.

databaseManager:
DatabaseManager

Instance of a Database Manager
class.

conversationManager:
ConversationManager

Instance of a Conversation
Manager class.

Methods showJoinDialog():void Shows the joining dialog when
it is called.

onCallPressed(call:Call):void Creates a call when it is called
by using a Call instance
containing the users’ ID and
created call instance ID.

onJoinPressed(callToken:String):
boolean

Joins the user to an ongoing
call when it is called by using
the callToken. Returns true if
joining is successful, false
otherwise.

loadPreviousCalls():List<Call> Retrieves the list of previous
calls of the user.

InCallScreen Displays the call screen in the online conference joined or created.

Attributes camState:CamState State of the camera:
CamState.ON: Camera is On
CamState.OFF: Camera is Off

micState: MicState State of the microphone:
MicState.ON: Microphone is

19

On
MicState.OFF: Microphone is
Off

translationType: TranslationType Type of the translation:
TranslationType.SETT : speech
to text
TranslationType.SITT : sign to
text
TranslationType.TTS: text to
sign

translationManager:Translation
Manager

Instance of Translation
Manager class.

firebaseManager:FirebaseManag
er

Instance of Firebase Manager
class.

conversationManager:Conversati
onManager

Instance of Conversation
Manager class.

Methods onVideoButtonPressed():void Changes the state of the camera
to CamState.ON if the camera
is off and vice-versa.

onMicButtonPressed():void Changes the state of the
microphone to MicState.ON if
the microphone is off and
vice-versa.

onTransTypePressed():void Changes the state of the
translation type to other types
sequentially.

onReplayPressed():void Replays the last translation
when it is called.

onEndCallPressed():void Ends the call when it is called.
Will invoke Firebase and
Conversation Manager
instances to handle the
finishing operations.

TranslationScreen Displays the translation screen with camera and microphone
options for the translation in real life.

Attributes camState:CamState State of the camera:
CamState.ON: Camera is On
CamState.OFF: Camera is Off

20

micState: MicState State of the microphone:
MicState.ON: Microphone is
On
MicState.OFF: Microphone is
Off

translationType: TranslationType Type of the translation:
TranslationType.SETT : speech
to text
TranslationType.SITT : sign to
text
TranslationType.TTS: text to
sign

translationManager:Translation
Manager

Instance of Translation
Manager class.

firebaseManager:FirebaseManag
er

Instance of Firebase Manager
class.

Methods onVideoButtonPressed():void Changes the state of the camera
to CamState.ON if the camera
is off and vice-versa.

onMicButtonPressed():void Changes the state of the
microphone to MicState.ON if
the microphone is off and
vice-versa.

onTransTypePressed():void Changes the state of the
translation type to other types
sequentially.

onReplayPressed():void Replays the last translation
when it is called.

ContactsScreen Displays the contacts of the user.

Attributes contacts:List<Contact> Contact list of the user.

query:String Search query input string.

email:String E-mail of the user.

qr:Image Qr code of the user.

firebaseManager:FirebaseManag
er

Instance of Firebase Manager
class.

databaseManager:DatabaseMana Instance of Database Manager

21

ger class.

Methods onSearchIME(query: String):
List<Contact>

Search a contact from the list
according to the given query.

onFABPressed():void Opens the modal sheet
containing options to add a new
contact.

onContactPressed(contact:Conta
ct):void

Goes to the contact screen for
the specific contact chosen.

showEmailDialog():void Opens a dialog in order to get
the user input containing email
of the contact to add.

onEmailRequest(email:String):b
oolean

Sends an invitation request to
the new added contact through
Firebase channels by using the
given email.

showQrDialog():void Opens a dialog in order to get
the user input containing Qr of
the contact to add..

onQrRequest(qr:Image):boolean Sends an invitation request to
the new added contact through
Firebase channels by using the
given Qr.

onContactSlide(contactID:String
):boolean

Delets the slided contact
instance from the users’
contacts.

PendingInvitations Displays pending contact invitations.

Attributes invitations:List<Contact> List of the contact requests.

firebaseManager:FirebaseManag
er

Instance of a Firebase Manager
class.

databaseManager:DatabaseMana
ger

Instance of a Database Manager
class.

Methods onAccept(contact:Contact):boole
an

Accepts the contact request
when it is called.

onReject(contact:Contact):boole Rejects the contact request

22

an when it is called.

onBackPressed():void Goes back to the previous page
when it is called.

ContactScreen Displays a specific contact with the profile information and call

history.

Attributes contact:Contact The current contact

databaseManager:DatabaseMana
ger

Instance of a Database Manager
class.

conversationManager:Conversati
onManager

Instance of a Conversation
Manager class.

Methods onCallPressed():boolean Creates a call with the contact
when it is called.

onSharePressed():boolean Opens sharing options when it
is called.

onRemovePressed():void Removes the contact when it is
called.

onPicPressed():boolean Shows the profile picture of the
contact in full-screen mode.

onPreviousCallSlide(call:Call):b
oolean

Deletes the slided previous call
instance from all the saved
places.

onBackPressed():void Goes back to the previous page
when it is called.

SettingsScreen Displays the settings for the users to customize the interface, or

change the profile information according to their preferences.

Attributes user:User Current user.

databaseManager:DatabaseMana
ger

Instance of a Database Manager
class.

23

firebaseManager:FirebaseManag
er

Instance of a Firebase Manager
class.

preferenceManager:SharedPrefer
encesManager

Instance of a Shared
Preferences Manager class.

Methods onProfilePressed():void Shows a modal sheet in order to
select a new profile picture that
is taken from the camera or the
gallery. The sheet also contains
a selection for deleting the
profile picture of the user.

onNamePressed():boolean Handles the input to change the
name when it is called.

onEmailPressed():boolean Handles the input to change the
email when it is called.

onThemeSwitcherPressed():void Handles the input to change the
theme when it is called.

onLanguagePressed():void Handles the input to change the
language when it is called.

onChangePasswordPressed():boo
lean

Navigates to the change
password options.

onSignOutPressed():boolean Signs the user out when it is
called.

onDeleteAccountPressed():boole
an

Deletes the account of the user
when it is called.

showAboutDialog():void Shows the about dialog when it
is called.

onBackPressed():void Goes back to the previous page
when it is called.

4.5.2. Managers

PageHolder Main manager to handle screen translation throughout the app.
Basically, a super-class that contains each screen and handles the
navigation.

Attributes currentPage: Integer Holds the id of the current
page.

24

controller:PageController Instance of PageController
class.

Methods showProfileDialog():void Shows the dialog containing
user information and Qr Code
of the user.

onNavButtonPressed(pageToNav
igate: Integer):void

Handles the navigation from
currentPage to given page.

onSettingsPressed():void Navigates to the settings screen
when it is called.

onBackPressed():void Closes the application.

FirabaseManager Manages the information updates and retrieval from Firebase. All
methods of this class use Firebase to operate requests.

Attributes instance:FirebaseManager Instance of the class itself

Methods getInstance():FirebaseManager Retrieves the instance of the
class.

getCurrentUserData():User Retrieves the current data of the
user.

loginUser():boolean Logs in the user.

signUpUser():boolean Signs up the user and updates
Firebase.

sendForgetPasswordRequest():bo
olean

Sends a request to Firebase in
order to send a reset password
mail.

createCall(callID:String):boolean Saves the shareable callID to
the Firebase.

joinCall(callID:String):boolean Saves userID to the given
shareable callID which exists in
the Firebase.

removeFromCall(callID:String,
contactID:String):boolean

Removes the userID from the
given shareable callID which
exists in Firebase.

addToCall(callID:String,
contactID:String):boolean

Add a contact to the call with
respect to the given callID
which exists in Firebase.

25

finishCall(callID:String):boolean Deletes the callID from the
Firebase.

getUserContacts(userID:String):
List<Contact>

Retrieves the contact list of the
user from the Firebase.

addContactWithMail(email:Strin
g):boolean

Sends a request to the contact
that exists in Firebase with the
given e-mail.

addContactWithQr(qr:Image):bo
olean

Sends a request to the contact
that exists in Firebase with the
given qr code.

removeContact(contactID:String
):boolean

Removes a contact from the
user's contact list stored in
Firebase.

getInvitations(userID:String):Lis
t<Contact>

Retrieves contact requests
waiting for approval in the
Firebase for the user.

acceptContact(contactID:String):
boolean

Accepts the contact request and
adds the contact to the user’s
contacts stored in Firebase.

rejectContact(contactID:String):
boolean

Rejects the contact request and
deletes the invitation from the
list stored in Firebase.

getContact(contactID:String):bo
olean

Retrieves specific contact
information by using the given
contactID from the Firebase.

changeProfilePicture(newPic:Im
age):boolean

Changes the profile picture of
the user stored in Firebase.

changeName(newName:String):
boolean

Changes the name of the user
stored in Firebase.

changeMail(newMail:String):bo
olean

Changes the email of the user
stored in Firebase.

changePassword(old:String,
new:String):boolean

Changes the password of the
user stored in Firebase.

signUserOut(userID:String):bool
ean

Signs the user out and invokes
Firebase for the logout event.

deleteUser(userID:String):boolea
n

Deletes the user and all the
information about it from the
Firebase.

26

DatabaseManager Updates the database and retrieves information about the contacts
according to the user.

Attributes instance: DatabaseManager Instance of the class itself.

Methods getInstance(): DatabaseManager Retrieves the instance of the
class.

getPreviousCalls():List<Call> Retrieves the list of previous
calls.

getContacts():List<Contact> Retrieves the list of contacts
from the database.

addContact(contactID:String):bo
olean

Saves the given contactID to
the database.

deleteEverything():boolean Clears the database including
all saved instances of previous
calls and saved contacts.

ConversationMana
ger

Manages the online conference calls.

Attributes instance:ConversationManager Instance of the class itself.

lastTranslation: String |
List<Image>

Holds the last translation
information. It can be a text
translated from video data or a
video generated from text.

Methods getInstance():ConversationMana
ger

Retrieves the instance of the
class.

createCall(userID:String):String Creates a call on behalf of the
user.

joinCall(callID:String):boolean Joins the user to the call with
the given callID which was
created before.

endCall(callID:String):boolean Ends the call.

removeUserFromCall(userID:Str
ing):boolean

Removes the user from the call.

addUserToCall(contactID:String) Adds a user to the call.

27

:boolean

receiveVideoData(callID:String):
List<Image>

Receives the video data coming
from the server and feeds to the
UI.

sendVideoData(callID:String,
video:List<Image>):boolean

Sends the video output coming
from the camera to share the
video to the server that the call
is going on.

changeLastTranslation(latestTran
slation):void

Updates the last translated data.

getLastTranslation():String Retrieves the last translation
information.

SharedPreferences
Manager

Manages the interface settings according to user preferences.

Attributes instance:
SharedPreferencesManager

Instance of the class itself.

Methods getInstance():
SharedPreferencesManager

Retrieves the instance of the
class.

addOrChangeUserID(userID:Stri
ng):boolean

Saves the UserID created by a
Firebase instance to preferences
store. If an existing value is
found, an update operation will
be done.

getUserID():String Retrieves the user ID.

setLoggedIn(loginState:boolean)
:boolean

Sets the logged in state of the
user.

isLoggedIn():boolean Checks if the user is logged in.

setLanguagePreference(language
:String):boolean
getLanguagePreference():boolea
n

Retrieves and updates the
language preferences of the
user according to the input.

changeTheme(themeMode:Strin
g):boolean
getTheme():String

Retrieves and updates the
application’s theme according
to the input.

setLatestCall(callID:String):bool Retrieves and updates the latest

28

ean
getLatestCall():String

call of the user.

setMicState(micState:MicState):
boolean
getMicState():MicState

Retrieves and updates the latest
state of the microphone.

setCamState(camState:CamState
):boolean
getCamState():CamState

Retrieves and updates the latest
state of the camera.

setTranslationType(type:Translat
ionType):boolean
getTranslationType():boolean

Retrieves and updates the latest
translation type of the user.

deleteEverything():boolean Clears the shared preferences
data store, including deleting
every key and their
corresponding values.

TranslationManage
r

Creates a bridge and handles the I/O operations between Flutter
interface and Python interface.

Attributes instance: TranslationManager Instance of the class itself.

Methods createBridge():
TFLiteModelInstace

Creates a bridge between
Python Manager instance and
Dart Manager instance and
returns it as a TFLite Model

getInstance():
TranslationManager

Retrieves the instance of the
class.

translate(transType:
TranslationType): String |
List<Image>

Translates the given input and
returns a string if the given
translation type is
TranslationType.SITT or
TranslationType.SETT or a List
of images which corresponds to
a video if the translation type is
TranslationType.TTS

translateSpeech(speech:File):
List<Image>

Translates given speech and
returns a video output.

translateText(text:String):
List<Image>

Translates given test and
returns a video output.

translateSign(List<Image>): Translate given video in sign

29

String language to text.

4.5.3. Model

Conversation A model class to hold information about online conversation
(online conference call).

Attributes conversationId:int Discriminative id for the call.

date:Date Date of the conversation
created.

duration:TimeStamp Duration of the conversation
after the creation.

participants:List<User> List of users participated in the
call.

Methods addParticipant(userId:int):
boolean

Adds a user to the conversation.

removeParticipant(userId:int):bo
olean

Removes a participant from the
conversation.

User A model class to represent the user.

Attributes user_info: Contact Holds the information about
user’s id, name, e-mail, profile
picture and qr code.

user_contacts:List<Contact> Holds the contact list of the
user

Methods addContact(QRData: bytearray):
boolean

Adds the contact by qr code.

addContact(email:String):boolea
n

Adds the contact by email

removeContact(otherUserId:int):
boolean

Removes the contact from the
contacts list.

Contact A model class that holds the information of the contact.

Attributes userId:int Discriminative id of the

30

contact.

name:String Name of the contact.

email:String E-mail of the contact.

picture:bytearray Profile picture of the contact.

QRData:bytearray Qr code assigned to the contact.

4.6. Translation Pipeline

Figure 6: Bidirectional Translation Pipeline

The translation consists of two different pipelines. These are Sign Language Generation and

Sign Language Recognition as shown in Figure 6.

Sign Language Generation:

● Speech Recognition Model: Used Flutter libraries to integrate this model. It gets the

voice input from the application and converts the speech to the corresponding text.

The text output is then sent to the FastAPI server.

● Text to Gloss Model: It takes text input and tokenizes the sentence using StanfordNLP

libraries. Then, it converts the words to their base forms. Post-processing the words, it

constructs the glosses according to the ASL grammar. Finally, it outputs the gloss list.

31

● Gloss to Skeleton Model: Takes gloss list as input and finds corresponding skeletons

generated by OpenPose model. Then, by default, it merges the skeleton videos to

construct the final sentence and outputs a skeleton video.

● Skeleton to Human Model: This is an optional step as this feature is still under

improvement. If the user chooses this option to try, it is then activated. It takes

skeletons as inputs and constructs the videos with user images using a GAN model.

The output is then sent back to the mobile application.

Sign Language Recognition:

● Sign to Gloss Model: The application takes frames from the camera or WebRTC

server and sends the frames to the local server. Then, the sign recognition model

predicts the sign and outputs the corresponding glosses.

● Gloss to Text Model: It takes the gloss list and converts these glosses into an English

sentence by using an NLP grammar library called HappyTextToText. Then, it outputs

the sentence and sends the result to the application through local APIs.

5. Testing Details

Our system is not so complex that required a separate testing environment. That is why we

did not implement any tools or test modules independentyl. Instead, each team member is

assigned to a different sub-system and we continuously applied manual testing and specifi

testing libraries for the completeness and performance of each sub-system. As we were

meeting at least once each week, we managed to test the systems every time we added

something new. That allowed us to detect the errors in the early steps and continue stacking

up to the error-free systems.

5.1. Testing User Interface

The user interface of the application is one of the most important parts of our application. We

used manual testing for each screen. Additionally, as we used Flutter for the whole UI

system, it was easier to construct tests as Flutter contains testing libraries that can be

integrated easily. We checked the system’s performance, localization, and user interface

response by creating widgets. We also used manual testing to evaluate the performance of

each screen on different operations, including user-specific choices on the visual options of

UI.

32

5.2. Testing APIs

For the local server to run our translation models, we used FastAPI. It was important to make

our APIs run properly as our main features relied on the requests that are executed on them.

That is why we paid attention to handling the errors and warnings appropriately and testing

our APIs performance and continuity. To do this, we mainly used test client libraries specific

to FastAPI.

5.3. Testing the Performance of the Translation Models

For evaluating the performance of our translation models in each stage of the pipeline, we

tested each model with our own videos and sentences. For the text-to-sign pipeline, we

generated sample sentences to check text-to-gloss and reviewed the ground truth from ASL

grammar sites. According to the results of NLP models, we had post-processing steps to

construct the most similar gloss representation of the sentences. Then, we tested the outputs

of OpenPose, which was used to generate skeletons. For the sign-to-text pipeline, we tested

the trained sign recognition model with our own videos and fine-tuned the hyperparameters

for the optimal output.

6. Maintenance Plan and Details

6.1. Server Maintenance

The servers of Signify are mainly used to execute machine learning models. Currently, we

use local servers and post requests from APIs, however, our future plans are different. For

now, we do not have a maintainable server as our local host cannot be open for forever. As

our models require a large amount of memory, it is also not possible to maintain our models

on the application. Therefore, with the help of a budget or investment, our future plans

include paying extra fees to maintain a space in a new server.

6.2. Database Maintenance

Signify stores the user data in Firebase DB. Maintaining this database updated is a crucial

part of the application as all user information is kept here. To keep our database safe and up

to date, we should optimize queries and perform regular backup operations. We also need to

optimize the changes to keep the database structure simple and efficient.

33

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design

To conduct a project, different factors should be considered to produce a product that

provides a great user experience, solves people's problems, etc.

The main factor for the developers is to organize and plan the project's progress. Since it is a

teamwork project, team members should collaborate and communicate with each other. One

part might have a huge impact on other parts; therefore, team members should consider the

consequences of their actions. To ensure this communication and collaboration, we followed

agile and scrum methodology for developing the project. The team had weekly meetings to

determine the road map and discuss the current situation.

Another major consideration is related to user experience as the application targets specific

people. The application is designed user-friendly so that no drawback occurs. It has not only

a modern user interface but also a simple, target-specific, flawless, and fast design to provide

the best user experience, specifically for speech/hearing-impaired users.

Furthermore, the user should have no security concerns. Personal and sensitive data should be

protected against any adversarial attack. Nowadays, a lot of applications are exposed to

adversarial attacks. The application is designed to be protected against them. All personal and

sensitive data is encrypted and stored safely. Also, any non-required data which has no

impact on application performance are not stored or taken by the user. To comply with

“General Data Protection Regulation” - GDPR and “Kişisel Verilerin Korunumu Kanunu” -

KVKK, any personal and sensitive data are not shared with third parties.

7.2. Ethics and Professional Responsibilities

Our target users are hearing and speech impaired people; therefore, some ethical and

professional responsibilities are taken. The most significant moral obligation is to provide

equal opportunities in the usage of the application.

To ensure the ethical responsibility mentioned above, the dataset used in training is checked

not to be biased. The dataset should be representative of all ethnic groups. The training data

appeals to all the users to not humiliate the users' identity and to provide a better user

experience. Since the project aims to improve the standard of hearing and speech impaired

34

people, it should be sufficient and representative to make correct and similarly accurate

predictions without discriminating against any user. Furthermore, the output of the voice to

text and sign language models should not be discriminative. The caption generated by the

application should not be biased regarding any race, gender, or social class.

Furthermore, some conversations might include private information about the user; therefore,

this information should be protected and should not be shared with other users or third-party

companies. As the application grows, user feedback and some recordings of the meetings can

be utilized to enhance the performance of the machine learning models. In these cases, any

personal information, such as name, address, and the job should not be revealed.

Additionally, to serve the machine learning models, we used APIs; however, any information

about the user is not sent to APIs to protect the user’s data.

In conclusion, in the development of this project, a representative and unbiased dataset is

selected so as not to cause any discrimination. Moreover, the machine learning models' output

did not include phrases that imply gender inequality, humiliation, and ethnic-based bias.

Finally, users’ personal information is not shared with other users or third-party companies

and is protected.

7.3. Judgments and Impacts on Various Contexts

Signify takes various contexts into account as discussed in the table below.

Effect Level Effect

Cultural Factors 9 Change in learning model outputs due to cultural
differences in spoken-sign language.

Public Safety 8 General Data Protection Regulation

Public Health 1 Impaired people’s health should be considered,
however, it is not the main purpose of the
application.

Public Welfare 2 Reducing the communication limits among
impaired people.

Economic Factors 6 The application should be free.

Environmental Factors 1 It is not in the scope of this project.

Social Factors 5 Language barrier for hearing impaired people in
the sign up process.

35

Global Factors 8 Translation is done only between English and
ASL.

Technological Factors 10 Change in design of learning models due to the
publication of new technologies.

Table 1: Factors that can affect analysis and design

7.4. Teamwork Details

7.4.1. Contributing and Functioning Effectively on the Team

The most important factor of proper teamwork is communication. As a team, we scheduled a

time when everyone is available. During the development, we met at least once and discussed

the progress so far and regulate the future plans. New responsibilities were distributed to each

team member considering the workload and previous experiences. While distributing the

tasks, various factors are taken into account. Each team member has his/her own weaknesses

and strengths in different fields, and different interests; thus, assignments of tasks are done

accordingly. We have worked together before, so it was easier to decide and communicate

based on our previous experiences.

In addition, we have scheduled the works that should be completed by a given deadline that

was set either by the department or our team. We gave great importance to the deadlines and

finished our tasks accordingly. Deadlines were also crucial for a functioning project and

future progress.

7.4.2. Helping Creating a Collaborative and Inclusive Environment

The works are separated among team members; however, that does not mean we worked only

on the tasks given. When someone had a problem or needs assistance, other team members

became involved in the work to achieve better outcomes. Additionally, after a task is

completed, it was reviewed by other members. Collaborative reviewing was one of the

significant facts of teamwork. One can overlook mistakes he/she has done; however, others

can see and correct those mistakes. By reviewing each work done, we aimed to improve our

design and eliminate errors that can influence our future work.

36

7.4.3. Taking Lead Role and Sharing Leadership on the Team

As part of the planning activity, the project goals are listed and divided into work packages

(WPs). As going through each WP, new sub-packages were created to divide the

responsibilities. Each work package had its own leader and at least two students worked on a

WP. Although the contributions of the members are equally divided, leaders had the extra

responsibility to regulate the process of the work packages they were assigned to.

WP# Work package title Leader Members involved

WP1 Project Specifications Report Çağlar Everyone

WP2 Analysis Report Ali Taha Everyone

WP3 User Interface Implementation İrem Ali Taha

WP4 High Level Design Report Naci Everyone

WP5 Sign Language Translation
(From Video to Text)

Sena Çağlar

WP6 Sign Language Translation
(From Text to Animation)

Çağlar Naci

WP7 Database Connection Ali Taha Sena

WP8 Mid Testing Naci Everyone

WP9 Demo-Presentation Sena Everyone

WP10 Real Life Communication İrem Ali Taha

WP11 Video Conference
Communication

Naci İrem

WP12 Low-Level Design Report Çağlar Everyone

WP13 Final Testing Ali Taha Everyone

WP14 Final Report Sena Everyone

WP15 Final Presentation İrem Everyone

Table 2: List of Work Packages

7.4.4. Meeting objectives

The objectives mentioned in previous reports were successfully implemented. However, due

to various limitations and the ambiguity in state-of-the-art models, changes are done to some

37

features and backend development. For example, our first design included a text-to-sign

translation where the generated video was planned to be the user him/herself. Due to the

performance issues in the GAN model and the ambiguity of the results, we have decided to

show the generated skeletons only. The generation of the user’s ASL video is added as an

option until we get to improve the model enough to propose as an application feature.

Additionally, our first backend design included the translation models integrated into the

application itself, to get the translation results faster. However, due to the size of the models

and the complexity of the deployment, we have instead decided to use API’s to run the

models. We also optimized the communication through API’s to provide a real-time

experience as we promised in our previous objectives.

Besides the successful implementation of our objectives, we have added extra features and

tutorials to Signify. The main page of the application provides additional sections to learn

word-level ASL and see the latest news about ASL.

7.5. New Knowledge Acquired and Applied

As Signify, we have acquired various hard and soft skills during the project’s design and

implementation. The most important factor of our project was to translate ASL properly. To

do that, we have learned some basic words and daily conversations along with the ASL

grammar in simple sentences. It was necessary for us to learn ASL as we needed to check the

correctness and completeness of our models.

Another important factor was to successfully translate the sign language in both directions.

We needed to understand the pipeline for both sign-to-text and text-to-sign translation. We

conducted a literature review for both translations and constructed our baseline accordingly.

As explained detailly in section 4, we have a bidirectional translation pipeline that requires

different models for each stage. For text-to-gloss and gloss-to-text models, we have learned

about various natural language analysis packages that contain tools to tokenize texts and

convert the languages into lists of base-formed words and morphological features. For

gloss-to-sign and sign-to-gloss models, we have learned Openpose to generate the skeleton

for the corresponding input. We also trained a GAN model to generate user-specific video,

where we use the image of the user and generated a skeleton to construct a video of the user

doing ASL. We learned the basics of GAN and several different implementations of the

network.

38

For the backend communication in the application, we first decided to use the user’s local

memory to store the models and have a faster translation. However, we encountered serious

limitations in both the memory capacity of the phone and the deployment of the learning

models. That is why, we decided to use FastAPI and optimized the communication between

the host computer and our mobile application. We learned how to share information through

APIs and how to provide a translation near real-time.

8. Conclusion and Future Work

In the end of the project, we successfully created the application we proposed ensuring the

completeness of our main objectives. Signify is able to work both on Android and iOS with

the help of its Flutter backend. We can now offer a communication application for

hearing/speech impaired people by bidirectional translation in both online calls and real-life

scenarios.

Although we have completed all our tasks, Signify is open to future extensions and

performance improvements, especially for translation models. For the application part, we

designed the software architecture in a way that new features can be added and a new server

can be hosted easily. For the learning models, we used the latest state-of-the-art models to

provide the most accurate translation service. However, bidirectional ASL translation is still a

continuing research area that requires significant improvements. It is open to new ideas, more

comprehensive datasets, and improved network architectures to reach a satisfactory level of

translation.

During this project, we encountered various problems both in theory and in practice due to

the challenging features we proposed. However, we continued working as a team and tried

our best to accomplish what we want to do. We learned a lot and also improved our soft skills

such as teamwork, leadership, and time management. Even though there were times we felt

hopeless, we are very proud of ourselves as we successfully overcame all the hardships.

39

9. Glossary
● Online conference: A feature where people can easily communicate online through

our application.

● Real-life communication: A feature where people can easily communicate in real life

through our application.

● Bidirectional translation: Translation from text to sign language and from sign

language to text.

● ASL: American Sign Language, the chosen sign language for the application.

● UI: User interface of the application.

● DB: Database that holds the user related data.

● ML: Machine learning.

● GAN: Generative adversarial networks that are used to generate an ASL animation

from text information.

● NLP: Natural Language Processing

● OpenPose: The model used for the generation of skeletons.

● Model data: Data that is used for the design and improvement of ML models.

40

10. References

[1] E. McPhillips , “World wide hearing loss: Stats from around the world,” Audicus,

14-Sep-2021. [Online]. Available:

https://www.audicus.com/world-wide-hearing-loss-stats-from-around-the-world/.

[Accessed: 05-Oct-2021].

[2] “Every 4th person to suffer hearing loss by 2050: Who,” Down To Earth. [Online].

Available:

https://www.downtoearth.org.in/news/health/every-4th-person-to-suffer-hearing-loss-by

-2050-who-75718. [Accessed: 05-Oct-2021].

[3] “Hand talk translator - apps on Google Play,” Google. [Online]. Available:

https://play.google.com/store/apps/details?id=br.com.handtalk. [Accessed:

05-Oct-2021].

[4] “ASL translator - apps on Google Play,” Google. [Online]. Available:

https://play.google.com/store/apps/details?id=com.asltranslator. [Accessed:

05-Oct-2021].

[5] “S L a I T. real-time sign language translator with AI.,” S L A I T. Real-time Sign

Language Translator with AI. [Online]. Available: https://slait.ai/. [Accessed:

05-Oct-2021].

41

